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Abstract--A linear stability analysis has been performed to investigate the stability of liquid flow down 
an inclined circular tube. To this purpose, approximate solutions which describe laminar and turbulent 
steady flow down an inclined tube have been developed first. The stability analysis has then been 
performed by an integral method. The results of the present investigation indicate that, in general, flow 
in a tube is more stable than in a channel and, in particular, there is a value of the liquid height at which 
the flow is always stable. 
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1. INTRODUCTION 

The mechanism of formation of long wavelength disturbances at the surface of a liquid flowing 
down an inclined plane has been investigated extensively in the past (Kapitsa 1948; Yih 1954, 1963; 
Benjamin 1957; Hanratty & Hershman 1961). 

The experimental observations have shown that the liquid interface is always agitated by waves, 
except for very low values of the film Re. Binnie (1957), for instance, observed that for water 
flowing down a vertical plane there are no evident waves for film Re <4. 

Theoretical investigations have been carried out by means of a linear stability analysis of the 
Navier-Stokes equations describing film flow. A small disturbance 

h ' = h  - f i ,  [l] 

h and h- being, respectively, the actual and the time-averaged value of the film height (see figure 1), 
of the form 

h' =/~ exp[i~t(x - Ct)], [2] 

is imposed on the interface in order to determine the conditions under which it becomes unstable. 
In [2], x is the coordinate along the main flow direction and t the time. The amplitude of the 
disturbance/~ and the wavenumber a = 2~/2 are real quantities, 2 being the wavelength; the wave 
velocity C = CR + iC~ is complex. The wave will grow or decay in time depending on whether C~ 
is positive or negative. The condition C~ = 0, known as neutral stability, defines the transition from 
a stable to an unstable film. Substituting [1] and [2] into the Navier-Stokes equations, and 
linearizing, leads to the Orr-Sommerfeld equations. Various papers deal with their solution, using 
a variety of methods and approximations. Benjamin (1957), in particular, obtained by means of 
a power series approximation the stability condition relative to very long wavelength disturbances 
formed in liquid flow down an inclined plane. 

An integral approach was outlined by Hanratty & Hershman (1961), who studied the stability 
of gas-liquid flow in a horizontal channel. According to this method, the Navier-Stokes equations 
are integrated in the direction normal to the free surface and the stability analysis is performed 
for the resulting averaged mass and momentum equations. Hanratty & Hershman (1961) showed 
that the method, when applied to study liquid flow down an inclined plane, gives a stability criterion 
very similar to that derived by Benjamin (1957). 
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Figure 1. Model of the flow in the x-direction. 

-7 
Figure 2. Model of the flow in the cross-section. 

The parallel problem of flow down an inclined circular tube has not yet been considered in the 
literature. In the present paper, this problem will be solved adopting an integral approach similar 
to the one developed by Hanratty & Hershman (1961). By adopting this method, and an 
approximate solution to the problem of steady flow, both under laminar and turbulent conditions, 
it has been possible to derive the stability conditions in closed form. 

2. PREVIOUS WORK 

The stability condition derived by Benjamin (1957) can be stated as 

Re = 4 OAnr < -~ tan (9, 
V 

[3] 

6) being the inclination angle to the vertical, v = g/p the kinematic viscosity, p the viscosity and 
p the density of the liquid. The average velocity UA is defined as 

';0 Ua = ~ u dy, [4] 

where u is the velocity in the x-direction, y the coordinate normal to the free surface and UA is 
the average velocity of the undisturbed flow. 

Hanratty & Hershman (1961) characterized the velocity field by the shape factor F, defined as 

1 I0' F = ~ u 2 dy. [51 

They argued that a small disturbance introduced on the interface, produces disturbances in F, 
UA and in the wall stress rw, that can be assumed linearly related to it, i.e. 

h'  U~ F '  z~v 
. . . .  exp[i~(x - Ct)], [6] 

t; 0A f 

where the amplitudes 0A, fW and f can be complex. 
Assuming two-dimensional incompressible liquid flow and using a shallow liquid assumption, 

they considered the following integral mass and momentum balances: 

-~x udy  + ~ - = 0  

and 

~t u dy + ~x dy = P + gh cos O - gh sin 6) t~hox 

where g is the acceleration due to gravity and a the surface tension. 

[7] 

o" t~3h 
+ h N 



STABILITY OF LIQUID FLOW DOWN AN INCLINED TUBE 487 

Substituting [4] and [5] into [7] and [8] and making use of  [1] and [6], they found at neutral 
stability 

~'~A C R -  UA 
T = -----if--- '  [9] 

and 

G F(o'Y- 2r 9+ r-(:, l  : :  sin 0 +  w[q a= 2# 
 Lt, ,s UA h J p~h p 

[10] 

fwR --~-. [11] Cn = pg cos O + p~/~ tT~ Fih 

In order to solve this problem, Hanratty & Hershman (1961) used a pseudosteady-state 
approximation, whereby the instantaneous wall shear stress and the shape factor are related to flow 
variables by the same equations as derived for the undisturbed flow. 

By solving the Navier-Stokes equations for steady laminar motion of a liquid down an inclined 
plane, we obtain 

3pUA [12] 
TW-- h 

and 

F =6.  [13] 

From [9] and [11], it is finally obtained that 

and, at neutral stability, 

where Fr, defined as 

CR 
- 3  

OA 

1 / 0"6 2 
Fr = - -~  X/ sin O + - - ,  ,/3 Pg 

FF - UA 

is the Froude number. 
Steady flow can be expressed in terms of Fr as 

[14] 

[15] 

[16] 

Fr 2 = ~ Re cos O. [17] 

Equation [17] combined with [15] gives 

R e = 4  t a n O + - -  . [18] 
pg cos O 

It is noteworthy that, except for the numerical factor, the stability criterion, for e --, 0, is identical 
with the condition [3] obtained by solving the Orr-Sommerfeld's equations, therefore validating 
the approximate analysis based on the integral equations. 

It can also be remarked that in Benjamin's paper, before approaching the general solution for 
small (cth'), the following equations were derived: 

CR 311 (0~')2 ..~ ~ (~ ' )4  3.3555556 (~th') 6 + 0.0077581 (~/; Re) 2] [19] 
UA 

and 

tan 0 + Pg cos @ ,] = [5 -- 4.1466856 (~tar) 2 + 10.976471 (~th') 4 + 0.000047925 (~th" Re)2]. [20] 
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The error in [19] is known to be considerably less than O[(a[i Re)a]. Equation [20] expresses the 
approximate relation between Re and ~t for neutral stability. The equation is easily solved, since 
for a specified value of Re, it becomes quadratic in (~/i) 2. 

A simple analysis of the second member of [20] shows that, for small (cth) and Re, the quantity 
in square brackets is <(6/5), i.e. closer to the value found with the integral method, further 
validating that analysis. 

Also, Kapitsa (1948) used an integral approach, different from that of Hanratty-Hershman, and 
presented a second-order solution to the problem of flow down a vertical plane. 

Adapting his approach to an inclined channel, the following neutral stability condition is 
obtained: 

or also 

F r =  ~ s i n @ +  P g /  

Re = tan O -~ pg~os ~9 ; 

[21] 

[22] 

still similar to the previous one, but less precise, as discussed by Yih (1963). 
Yih solved the Orr-Sommerfeld equation by expansion in powers of (~h" Re). Initial erroneus 

numerical computations (Yih 1954) were corrected by solving the equation with a perturbation 
procedure, which gave results in complete agreement with those of Benjamin for long waves. 

In principle, Benjamin's method is more accurate, but it cannot be used to solve other problems, 
in the sense that it can be applied only to very simple flow conditions. Yih's method is accurate and 
more adaptable, for example, to the cases of small waves or large Re, but Hanratty-Hershman's 
integral approach can be used, in addition, for turbulent flow (see Hanratty 1983) and for more 
complicated geometries than a channel (Lin & Hanratty 1986). 

For a circular duct the average velocity and the shape factor can be defined as 

and 

Up = ~ u dA [23] 

Fp = u2 d A ,  [24] 
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where A is the cross-sectional area occupied by the liquid (see figure 2). The integral mass and 
momentum balances can now be written as (Lin & Hanratty 1986) 

and 

O(AUp) ~(ArpU~) 
dt t~x 

where S is the wetted perimeter. 
At neutral stability it is found that 

O(AUp) OA 
Ox + ~ - = 0  [25] 

zwS + gA cos O _ gA sin o ah aA d3h p dx + - - -  [26] p a x  3' 

tip C R -  Up 
-~- = ~ ,  [27] 

12 ~CR ~ 2 vp  -2rp +rp ~ j =g tsinO+pot--- +-- 
and 

fwS + fwBg 

SI being the length of the free surface. 

= pg COS O + p~/T 0~/~PI 7 '  

a~t2X 
P'~I [28] 

[29] 

In order to adopt this method, a relation like [12] between the wall stress and the mean velocity 
for steady flow is needed. In the following sections, the aforementioned approach will be used to 
investigate the stability of flow down an inclined tube, both under laminar and turbulent 
conditions. 

3. ANALYSIS 

3.1. Laminar f low 

Steady-state, free-falling laminar flow of an incompressible liquid layer down an inclined duct 
can be described by the Navier-Stokes equation 

(o2u 
I~ + ~--5, = - Pg cos O, [301 \ey2 0 2 - ]  

with 

and 

u =0,  at the wall, [31] 

t~U 
m dy 0, at the free surface. [32] 

Analytical solutions of [30]-[32] can be obtained in a number of cases. In particular, the velocity 
profile relative to flow down an inclined plane or to annular flow in a vertical pipe (for h <<pipe 
radius) is given by 

Zw 1 p 
u = --I~ y - 2 -~ gy2 cos O [33] 

or, in terms of the dimensionless variables 

is given by 

u + = u  / Z "  y + = y ~ z ' ~ ,  h+ h / ~  
' ~  T w ~ P 

u + = y+ (1 -- ~--~+). 

[34] 

[351 
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The Re, defined by [3], can be expressed in terms of  the dimensionless film height as 

4 +2 Re = ~ h . [36] 

In a duct of  arbitrary shape, the characteristic, or mean, thickness of  the liquid layer can be 
defined as the ratio between the flow area occupied by the liquid and the wetted perimeter, 

A 
m = -~. [37] 

As the relations derived for flow in a channel are based on the assumption that the width of 
the channel is much larger than the film thickness, for a rectangular channel it can be assumed 
that 

m ~ h. [38] 

.The generalized definitions of  the liquid Re and the dimensionless thickness, m ÷, can then be 
introduced: 

Re = 4A Up 
Sv [39] 

and 
+ A 1 ~ w  

m [40] 
S v  

For a duct of arbitrary shape, it can be expected that the liquid Re is a function of m + and some 
dimensionless parameter describing the shape of the liquid phase cross-section. 

In a duct of  circular cross-section with diameter, exact solutions of [30]-[32] can be found for 
the following cases: 

(i) h / D =  0.5 

The axial velocity is, in this case, a function of the radial coordinate r only, then 
integration of [30] leads to 

1 pg cos O 
U - -  - -  ( h  E - r E ) .  [41] 

4 # 

The wall stress Zw can be calculated as 

and 

h 
Zw = -~ pg cos O [42] 

up = _ _  
h Zw g cos 0 A 2 

= - -  [43] 
4 # 2v S 2' 

The liquid Re can be obtained easily from the velocity profile and expressed as a 
function of  m +: 

Re = 2m +2. [44] 

(ii) h /D ~ 0 

For small values of  h/D,  it can be assumed [see, for instance, Russel et al. (1974) 
and Batchelor (1967)] that 

02u 02u 
<< [45] 

Oz 2 dy 2" 

Equation [30] can be integrated twice to give 

g cos O (2~'y - y2), [46] 
u---  2"----'7- 
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where a r is given by 

cos ) t471 
and R is the tube radius, ? the angle which subtends the liquid film and the angle 
tp is defined in figure 2. 

Then the volumetric flow rate is 

Q=AUp= u d y d z =  12v (? - sin y) - sin 2 ( 6 ? - s i n ? ) .  [48] 

Re in this case is obtained by means of [39] and [48]: 

( ~ ) [ ~  Y-- (6--?- -- s-~-in--Y '~l [49] Re = g cos3v 2OR 3 ? _ in ? - sin2 2 \ ? - sin ? ,]1" 

Substituting the wall stress 

zw = pg c°s O As = pg c°s o R ( ~ - s in?)?  [50] 

into [40] and making use of [49], Re assumes the following expression: 

y__(6.._? -- sin ? ) ]  8 +2f ? y [ 1 5 _  sin2 . [51] 
R e = ~ m  k y _ s i n ? ,  / L2 2 \ ? - s i n ?  

In pipe flow, the solutions of both cases, h/D = 0.5 and h/D --. O, can be expressed in the form 

Re = 4 a0m +2, [52] 

where a0 is a numerical constant. 
This equation is similar to the analytical solution obtained for stratified flow in a rectangular 

channel except that the coefficient a0 in [52] depends on h/D or ?. 
Fortunately, this coefficient is a very weak monotone function of h/D, at least in the range 

0 < h id  < 0.5, which is the most significant in practical applications. 
A comparison between [52] and [44] gives, for h/D = 0.5, 

a0 = 23- [53] 

and from [51], for h/D ~ O, 

a 0 = l i m 2 (  ? ) 2 [ 1 5 .  2 ? / 6 ? - s i n ? ) ]  54 [54] 
7~o+ y - s i n ?  - - - s i n  2k7 - -s i -~  ffi3--5' 

The ratio between the two values of ao is 105/108. In the full range 0 < h/D < 0.5, [52] with 
ao = 3 /2 ,  i .e.  

Re = 2m +2, [55] 

gives an almost perfect fit to the numerical integration of the Navier-Stokes equations presented 
by Buffham (1968) in the form of a plot of the total flowrate vs the liquid height. 

It has to be noted that the method proposed by Taitel & Dukler (1976) for the prediction of 
the hold-up in pipe flow, based on the equation 

• w = ½fP U~, [56] 

with the friction factor f given, for laminar flow, by 

16 
f = Re' [57] 

is completely equivalent to using [55]. 
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Equation [52], with [39] and [40], can be rewritten as 

•W ~ - - - -  
3# UpS 

ao A ' 

hence, using [6] and [27] and assuming a0 = 3/2, neutral stability conditions are expressed by 

[58] 

and 

'rWR CR "~ S 2 
fw - O--Pp~ + ~ - 2 ~  [591 

fw, = 0. [60] 

The shape factor Fp can be easily calculated in the two limiting cases, from [41] and [46]: 

(i) for h /D= 0.5, 

and 
Fp = 4/3; [61] 

(ii) for h/D ~ 0 

- s i n 7 ( l l 3  + 194 cos2-~ + 8 cos '-~)] .  [62] 

From [62], the following limiting value can be obtained for hiD ~ 0: 

Using the relation 

lim Fp = 140__ 1.4-]. [63] 
~. ~o+ 99 

7 = 2cos-~( 1 - 2 h ) ,  [64] 

it is also possible to calculate explicitly the derivative of the shape factor Fp with respect to the 
dimensionless height h/D of the liquid layer in the limit h/D ~ 0: 

d Fp 448 
lim ~ = - 386----i- ~ - 0.116. [65] 
7-o÷ d 

Interpolating Fp using the values given by [61] and [63] and its derivative [65], we obtain 

( h )  140 448h  32 ( h y .  [66] 
Fp = 99 3861 D 351 

With the help of the relation 
J 
-~- = ,~,, [67] 

at neutral stability it is found that 

and 

448 t p .  - + 64 [68] 

rpl = 0. [69] 
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Substituting [50], [59] and [69] in [29], we obtain the following equation for the nondimensional 
wave velocity: 

Crt 3 2 SA [70] 
Op ~2" 

The Fr for pipe flow can be defined as 

= Op k / ~ .  [71] Fr 

Substituting [60] into [28], the Fr at neutral stability can be calculated as 

l [ (  ff-(sin O a=2 / 
Fr = - ~t + Pg / [72] 

+ -  2 -  CR " " 

The main difference with respect to channel flow is that the Fr is now a function of the liquid 
level h/D and, in particular, there is an asymptote over which the flow is always stable. The position 
of the asymptote depends mainly on the value of fpR and on surface tension. In particular, it occurs 
at h/D = 0.5 if both/~PR and tr are neglected. Figure 3 shows the result obtained with fPR computed 
from [68], tr being neglected. 

In the limit y ~ 0 ÷, it is possible to calculate exactly the Fr at the transition. From [67], [70] 
and the relation 

2D = ~ a c, [73] 

we obtain 

It follows, from [72], that 

CR 4 A D  = 3 - 2 V (~ - sin ), ~-~p= 3 -  ~ - - ~ ) .  [74] 

lim F r =  / - ~ ( s i n O + a a 2 / .  [75] 
;.~o+ pg / 

If surface tension effects are neglected, the Fr at neutral stability can be calculated from [15] and 
[75] for channel and tube flow, respectively. To give an example, at an inclination O = 80 ° we 
obtain 

Fr ~0.573 for the channel 

and 

Fr ~ 1.949 for the tube. 

3.2. Turbulent flow 

Turbulent flow of a liquid layer has usually been described by means of eddy viscosity relations 
developed for full pipe flow. For instance, the Van Driest relation 

- = O. 16 y 1 -- exp [761 
v 26JJ ldY + 

has been adopted by Henstock & Hanratty (1976). In [76] e is the eddy viscosity. 
In full pipe flow this equation holds for the entire cross-section. In a partially filled pipe, the 

presence of a free surface may induce appreciable changes in the structure of turbulent eddies. 
However, considering that correlation methods based on the use of eddy viscosity equations derived 
for full pipe flow successfully predict the mean film thickness in channel flow, [76] will also be 
adopted for the present computations. 
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The Navier-Stokes equation relative to turbulent flow of a liquid film in a channel or in a vertical 
pipe can easily be integrated by a numerical method, when [76] is used for the eddy viscosity. The 
liquid Re can then be computed from the velocity profile, and the dimensionless thickness, defined 
by [40], can be expressed as a function of the Re. 

Henstock & Hanratty (1976) followed this approach for annular flow in a vertical pipe. Their 
results, relative to free-falling flow down an inclined plane at very high Re, can be expressed as 

m~- = 0.0379 Re °'9, [77] 

where m~- is the film thickness in turbulent flow. 
Equation [77] is directly obtained from [56], using for the friction factor the approximate 

correlation valid for large Re: 

f = 0.046 Re -°2. [78] 

Equation [77] can be extended to the case of turbulent flow of a liquid in a partially filled pipe. 
The numerical solution of the Navier-Stokes equation, relative to turbulent flow in a partially filled 
pipe, is simple in the two cases already considered for laminar flow (h/D = 0.5 and h/D ~ 0), as 
in these cases the partial differential equation can be transformed into an ordinary differential 
equation. 

In figure 4 the solution obtained for h/D = 0.5 is compared with the computations relative to 
channel flow. As can be seen from this figure, at large Re the solutions relative to pipe and channel 
flow tend to coincide. At low Re, turbulent solutions approach laminar flow equations [44] and 
[511. 

The stability analysis will be carried out, for channel and pipe flow, only in the limiting case of 
large Re, making use of [77]. In both cases the shape factor Fp is assumed to be equal to one. 

Equation [77], for channel flow, can be rewritten as 

hence, making use of [9]: 

,UUA Re08 rw = 0.00575 ~ - -  

= 2 

This equation substituted into [11] gives the wave velocity 

CR 5 

UA 3" 

The Fr at neutral stability is then obtained from [10]: 

3N/ a~2 
F r = ~  s i n O + - -  

gP 
A similar procedure is used for pipe flow. Expressing [773 as 

Zw = 0.00575 ~ Re °8, 

the following relation is derived from [27]: 

'w (1.8 CR ' : T )  .4 
f--~= ~-~p - 2 + 0.2 ~ ~ .  

The wave velocity is obtained substituting the latter relation into [29]: 

CR 5 2 .g~ 
Op 3 3A-~" 

[79] 

[80] 

[81] 

[82] 

[83] 

[84] 

[85] 
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Finally, making use of [28], the condition of neutral stability can be expressed as 

/ 
Fr = Pg J 

, I r { C . ~ : +  
W Lt, / 

[86] 

Stability conditions in channel and pipe turbulent flow are compared in figure 5. Also in this case, 
figure 5 shows that there is a limiting value of the film height for which the flow is always stable. 

4. CONCLUSIONS 

The 2-D problem of steady liquid flow down an inclined tube has been solved by approximate 
equations valid for laminar (see [55]) and turbulent flow (see [77]). The approximate solution 
obtained for laminar flow is a very good approximation of the exact solution for the full range 
of film heights. 

The stability analysis has then been based on the integral method proposed by Hanratty & 
Hershman (1961). 

The results of the analysis indicate that the effects of geometry on stability are relevant. In 
particular, it has been found that: 

1. In the limit h/D --* 0 the Fr at the transition in pipe flow is more than 3 times larger 
than in channel flow. In this limit, the stability analysis is exact. 

2. For laminar flow down a tube, the liquid layer is always stable for hiD = 0.5 
( [ p ~  = 0, ~ = 0). 

3. A similar result is obtained for fully turbulent flow at h id  = 0.812. 

These results are summarized in terms of variables known a priori in figure 6. In this figure, the 
superficial Fr s at neutral stability, defined as 

Us 
= Frs ~ [87] 



496  I'. GIOVINE et aL 

is represented, both for laminar and turbulent flow, as a function of pipe inclination, O, with the 
superficial Reynolds number, Res, defined as 

UsO 
Res = - - ,  [88] 

V 

as a parameter. 
In [87] and [88] Us is the superficial velocity (volumetric flow rate per unit cross-section). 
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